import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, MaxPooling2D

from keras import backend as K

from keras.datasets import fashion_mnist

from keras.callbacks import LambdaCallback

 

batch_size = 128

num_classes = 10

epochs = 12

 

# input image dimensions

img_rows, img_cols = 28, 28

 

# the data, split between train and test sets

(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()

 

if K.image_data_format() == ‘channels_first’:

    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)

    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)

    input_shape = (1, img_rows, img_cols)

else:

    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)

    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)

    input_shape = (img_rows, img_cols, 1)

 

x_train = x_train.astype(‘float32’)

x_test = x_test.astype(‘float32’)

x_train /= 255

x_test /= 255

print(‘x_train shape:’, x_train.shape)

print(x_train.shape[0], ‘train samples’)

print(x_test.shape[0], ‘test samples’)

 

# convert class vectors to binary class matrices

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

 

#Building our CNN

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3),

                 activation=‘relu’,

                 input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation=‘relu’))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation=‘relu’))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation=‘softmax’))

 

#compile the model

model.compile(loss=keras.losses.categorical_crossentropy,

              optimizer=keras.optimizers.Adadelta(),

              metrics=[‘accuracy’])

 

#reating a function that will be called at the end of the epoch

def on_epoch_end(_,logs):

    THRESHOLD = 0.90

    if(logs[‘val_acc’]> THRESHOLD):

        model.stop_training=True

        print(‘Stopping the training. Validation accuracy reaches 90%’)

lambdac = LambdaCallback(on_epoch_end=on_epoch_end)

 

history = model.fit(x_train, y_train,

          batch_size=batch_size,

          epochs=epochs,

          verbose=1,

          validation_split=0.3,

          callbacks=[lambdac])



Source link

author-sign